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FIEID EMISSION CHARGING OF METALLIC COLIOIDS

By N. Stankiewicz

SUMMARY

With a free-electron model of metallic collolds, the charging time in an
applied electric field is calculated for the alkali-group elements. A theoreti-
cal thin-wire ionizer is discussed with regard to required operating potentials,
necessary geometrical dimensions, and current-density capabillities.

INTRODUCTION

The theoretical improvement of electrostatic-thrustor efficiency resulting
from the use of charged particles of large mass has been recognized for some time
(ref. 1). Current studies on heavy-particle thrustors have developed in two
areas. One is concerned with employing large molecules and the other with ag-
gregates of atoms or molecules of colloidal size (simply called colloids). Both
types of heavy particles present the problem of a mass distribution in the beam
resulting in a loss of thrustor efficiency. For colloids, however, reference 2
indicates that the mass distribution can be quite narrow.

At present, several methods of charging colloidal particles are being in-
vestigated. The method to be considered in this report is that of ionization by
field emission of an electron. For reasons that are elaborated in the next
section, only metallic aggregates, and, in particular, only those of the alkali
group, are discussed in detail.

The field ionization method was studied in the investigation reported in
reference 3 for the case of a gas of alkali atoms. Results were not encourag-
ing, however, because of the excessive voltages required. This study was under-
taken to determine 1f requirements might be less stringent for colloids than for
atoms.

GENERAL DISCUSSION OF COLIOIDS
The structure of a colloidal particle is not clearly understood. It is
highly improbable that any well-ordered arrangement of atoms prevails such as in
& crystal. Tt is more likely that the colloid resembles a liquid droplet, within

which the atoms are randomly arrayed.

The electronic structure of a colloid is similarly not understood. With the



assumption that the density of a colloidal particle is equal to its bulk density,
it would be expected that metallic colloids contain unbound electrons; that is,
electrons shared by all the member atoms of the aggregate. This follows from
the nearness of neighboring atoms in a solid or liquid and also from the low
lonization potentials of metal atoms. On the other hand, atoms with high ion-
ization potentials, in the solid or liquid state, would be devoid of free elec-
trons and, therefore, would be nonconducting. Removing electrons from such
agegregates would hence be equivalent to ionizing the constituent atoms and would
be a much more difficult task because of the higher lonization potentials in-

volved.

To justify the hypothesis of free electrons, it may be pointed out that even
a ligquid metal is a good conductor desplte the disorder of its atoms. An alter-
native statement of the free-electron condition is the fact that the energy
levels of the valence electrons are not determined solely by the atoms in which
they were originally bound, but by all the atoms in the colloid; that is, the
allowed energy states must be determined by solving for the eigenvalues of the
wave equation in which the electrons are shared by all the ionized atoms in the

aggregate.

Because of the great difference in mass between electrons and atoms, the
atoms can be considered as quasi-stationary, while the electrons move among them.
Colloids, however, have no periodic structure, and thus an already difficult
calculation for the energy levels becomes unmanageable.

With the assumption that these allowed energy states E 1in the droplet are
somehow determined, Fermi statistics can be formally applied to obtain the fol-
lowing distribution function for the electrons:

£(8) = ——p gy (2)
exp (T—ET__> + 1

(Symbols are defined in appendix A.)

The Fermi energy Eg, however, would be both space and time dependent be-
cause of the random spacing of the metallic ions and the slowly changing inter-
ionic distances. These distances are slowly changing with respect to the move~
ments of the electrons but are rapidly varying with respect to the motions exe~
cuted by the colloid as a whole, Because of this, it would be expected that an
average Fermi level could be assigned in equation (1). In lieu of detailed
analysis and since this paper intends to give results indicative of the charging
mechanism, the Fermi level is taken as equal to the Fermi level found in bulk
materials. Elements with the smallest work functions will therefore be the
easiest from which to remove electrons and thereby produce positively charged
colloids. In view of this, the discussion is restricted to the alkali metals.
Since the mass range of interest in thrustor design lies between 104 and 106
atomic mass units (ref. 2), aggregates containing 10° and 10% atoms for each of
of the alkalies, lithium, sodium, potassium, cesium, and rubidium, are con-
sidered.



CALCULATTION OF IONIZATION TIME

The electrons in a metallic colloid move under an average potential that is
lower than the vacuum potential. At the surface, a potential "jump" to the
vacuum level restrains the electrons from leaving the colloid. The probability
of finding an electron at an energy greater than the vacuum level is exceedingly
small at ordinary temperatures, as can be seen from the Fermi distribution given
by equation (1).

An external electric field impressed on the colloid creates a potential
barrier through which electrons can tunnel. The potential at the surface of the
colloid is at the vacuum level and decreases linearly with a slope proportional
to the field strength. The number of electrons n passing through this barrier
per unit time depends on the number striking the barrier per second and on their
transmission probability through the barrier. The reciprocal of this number is
the average time required for one electron to tunnel through and is defined as
the charging time 7

a
!
S

(2)

If the field is in the x-direction and dn 1is the number of electrons within
the colloid having the velocity vy and a transmission probability D(Fx), then
it follows that

dn = f’s‘ Sf(E)vXD(EX)de dpy dp,, (3)

where Z/h3 is the density of levels (two spin states per volume nd of phase
space, h being Planck's constant); S 1s the effective surface area normal to
the x-direction; and pg, Py and p, are the momentum components. The trans-
mission probability is only a function of the energy in the x~-direction.

The total number of electrons that will penetrate the barrier is then found
by integrating over all possible momentums of the y- and z-components and over
all positive values of the x-component:

oo o0 o]

_STE =n = E%/ dp, v, D(Ey) / dp,, dp,*(E) (4)

h 0 -0 -00
When the last two integrations are carried out, there remsins
4m kTS [ E, - B

1 e ]

= . dE.D(E.)In |1 + e —_—_ 5

- — / L D(Ey) xp( T ) (5)
0

Before this integration can be completed, it 1s necessary to find the trans-
mission factor D(EX) as a function of energy. Because the potential is only a
function of the x-coordinate, the wave equation is reduced to a one-dimensional
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problem, and hence the W.K.B. (Wentzel, Kramers, and Brillouin) approximation
(ref. 4) is applicable. Accordingly,

D(E,) = exp [; = _/. w/§E;TVr?_E;7'¢xJ (6)

wvhere the integration is carried out over the barrier. To simplify the calcula-

tion, V(x) is approximated by a triangular barrier depicted in the following
sketch:

fVacuum potential, Eg

Potential, E

(a)

The 1imit of the barrier at x = a is seen from the sketch to be a function

of both the applied electric field F and the energy Ex of the impinging elec-
tron. Carrying out the integration gives

n )1/2
D(E,) = exp |- éffgﬁg%___ (Bg - B2 (7)

The ionization time is calculated with equation (7) substituted for
D(EX) in equation (5):

Al

[e0]
4 KTS 8x(2m,)1/2 3/2 By - E
= & " 4dE - ¢ (Ep - E In |1 + o X
3 _[ x CXP e — (B - Ex) e

(8)

Since this integration cannot be carried out in closed form, an approxima-
tion will be sought. Most of the contribution to the integral comes from below

the Fermi level; therefore, the first simplification is to replace the upper
limit by EO and to let



kT kT kT

In {1 + exp G%l;;fé? = 1n exp (?O —VE%> - Eg - By

Next, by expansion of (EB - EX)3/2 in a Taylor series about E, = E; and
by retention of only the first two terms, an integrable approximation is ob-
tained:

3/2  3/2 3 By - By
(EB - EX) = [1 + = _9_5___ + .. ]

where @, the work of function of the material, is equal to EB - EO.

Because the transmission factor rapidly converges to zero, the lower limit
in equation (8) can be replaced by -w. With the substitution n = (B, - Ex)/@,
the reciprocal charging time finally takes the form

— ©
=\ 1/2 \1/2
41m_S 8nizZm ¢ ) 4r{2m o
= ¢f exp |- e n exp |- e n| dn
T no 3heF heF
—la/ O
[ \1/2
2n2 Ehtém >
L= 8e7F” op |- e? (9)
T Bmhg Zhel

Fowler and Nordheim's equation (ref. 5) for the current density emitted
from a metal in a strong electric field shows the same functional dependence on
the field strength as equation (9) although the method of derivation was not the
same.

The effective surface area S in the field direction is taken to be the
cross-sectional area of a spherical droplet of volume V:

S = x (éY)Z/S = % (;@E_)Z/S (10)
4 4ﬂpa

Where N 1is the number of atoms in the colloid and pg 1is their number density,
taken to be equal to the bulk density. Figure 1 shows a plot of charging time
as a function of field strength for alkali-metal colloids containing 105 and 104
atoms. Table I contains the information used in calculating the curves shown in
the figures.



IONIZATION PROBABILITY AND UTILIZATION EFFICIENCY

In order to produce the strong electric fields needed for ionization, it is
necessary to use small geometries such as needle points or thin wires. An added
effect of the field is produced by the neutral colloids being drawn into the
regions of high field strength because of polarization forces. The polarization
force afforded by the field of a cylinder is a longer range effect (~T’3) than
the field of a point (~r‘5). For this reason, the following geometry, consist-
ing of three coaxial cylinders, is considered:

Potential, V

The central wire and the outermost cylinder are maintained at high potentials
with respect to the grounded cylindrical grid. This arrangement forms a 'poten-
tial well," as shown in the sketch.

Tt is assumed that a well collimated noninteracting beam of colloidal par-
ticles is introduced axially into one end of the tube. Because of the polariza-
tion forces, the particles are gradually drawn into the high-field region sur-
rounding the central wire, charged, and repelled Into the lower potential region.
The charged particles oscillate in the potential well until they drift out of
the tube. Once they are out, they can be introduced into a suitable thrustor.

The classical expression for the polarizability o of a spherical con-
ductor of radius R 1is

il

@ = 4ne RO (12)

This becomes for spherical colloids

Q
1l

N
3¢, — 1z
(o] pa ( )

where N and Pgys @8 before, are the number of particles and the density of the
droplet, respectively.



The potential energy of such a colloid in an electric field is then

U=-2 F2=-ge — F

5 (13)

The field about the wire is radially symmetric and can be written in terms
of the wire radius 1rg and the surface field strength Fjy:

r
a
F=TFy — (14)

Since the beam is assumed to be well collimated, the angular component of
the particle velocity is ignored, and the radial component is obtained from the
equation of motion

Z (25)

5 2 1/2
dr seo \V/ (Fz } Fz) /

m*
pa

where m* is the atomic mass as given in table I(a) and F; is given by equa-

tion (14) at r = r;, the initial distance from the origin.

The z-component is not affected by the field and is conserved through the
tube even after lonization if no particle interactions occur.

The probability P +that the colloid will emit an electron as it moves into
the high-field region is given by

P=1~exp-/§3 (18)
T

where dt is the differential residence time from equation (15). In terms of
the field strength, the integral in the exponent becomes

(17)

*
dt _p (22T ar 1
p a“a 3eq T(% F)FZ(FZ _ Fz)l/z
F,
i
The charging time 1 1in equation (17) is a function of an enhanced field

strength, which has an average value of three-halves of the external field.
This arises because of the distortion caused by the polarization of the colloid.

Initially, the colloids can enter the field at all possible values of Fis

that is, at any distance ry from the anode. The integrand, however, is a very



sensitive function of the field strength and rapidly vanishes away from the
anode. TFor this reason, the initial fileld strength is neglected. This is
equivalent to carrying out the calculation for a colloid starting at infinity.
Colloids nearer the anode will, of course, also become ionized under the same
conditions.

If the substitution

3 1/2
161t(2mecp)
X = T (18)

9heFara

is made, the integration takes the form of the well-known exponential integral
—Ei(—xa), which is tabulated in almost all mathematical handbooks (e.g., ref. 6).
In the expression

00

-Ei(-xa)=/ E;_xd_x (19)

£,

X5 1is obtained from equation (18) with r = rg. With these substitutions and
definitions, equation (17) becomes

2
at . «\1/2 . 1/6 e°F r g -
/—%— = - N /3 <Z§[1—é—o-> (4:J'Cpa) h?o 2 (§> El(-Xa) (20)

The ionization probability (eq. (16)) is very sensitive to small changes in

4t These same changes, however, are reflected in equation (20) as a slight
T

modification of the field strength (for a given radius); that is, the same order
of megnitude field strength is needed to produce partial ionization of the beam
as is used to achleve almost total ionization. In view of this, a condition

dt

willl arbitrarily be chosen by letting J/. - = 4, which yields a probability of

0.982. The utilization efficiency at this degree of ionization of the beam
should then be greater than 98 percent provided that the neutrals do not leave
the tube before they come into the ionization region. Solving equation (20) for
rs with a value of 0.982 for the integral then gives the desired relation for
the wire size as a function of the necessary field strength:

41ie 1/2 4np 1
s] a
r, = - (21)
a c2we/3 \ ¥ 3 ( 5)1/
167\2m_o
FoEL | - €

9ehFa




- The potential V_, between the wire and the grounded grid cylinder of radius r

o
is given by
To
Va =Fr, In = (22)
a

The field strength can be eliminated by combining equations (21) and (22)
to obtain the voltage reguirement as a function of wire radius. These are two
of the more important design parameters plotted in figure 2 for grid radii of
10~3 and 1072 meter.

To complete the discussion of utilization efficiency, it now remains to
calculate the necessary cylinder length to allow each colloid to reach the ion-
ization zone before leaving the tube.

The fraction of the colloidal beam having a velocity between v, and
v, + dv, 1is given by

N 2 Nm*vg 3
f(vz)dvZ =2 =7 P |- mmol Va v, (23)
Integrating from zero to vy then gives the total fraction having velocities
less than Vi
f, =1- (1 + v2) exp (—vz) (24)
Z

where

v = <g%;>l/2 v, (25)

The time it takes a particle starting at the beam edge r; to reach the
anode (rg ~ o) should be made equal to its transit time through the tube travel-
ing at a velocity v,. Hence, by use of equation (15),

0
1/2
*
_{Pam 1 c dr _ L (z6)
360 Fara r2 172 vy
1 - —
2
ry
ry



from which

2 Lo
1/2 vr{ 1n —=
2KT 177
- (Fe) @
S a

Table II gives the value of L at the atmospheric melting point of each of
the alkalies at the following parameter values:

N 104

v 1

ro =Ty, m 10-2
Ty I 10-5
Va, v lO5

If this value 1is represented by If, equation (27) can then be rewritten in terms
of 1ts more important parameters as

L = wor*

where 4 1s a nondimensional factor equal in magnitude to the radius of the
beam expressed in millimeters, and v, of course, gives the percent of beam £

that will be lonized as determined from equation (24). z

When the values of r,, ry, and V, were chosen, consideration was given
to figure 2, which shows these values as occurring at realistic operating points.
Except for variations in v and py, equation (27) must be used as the basis for
computing the tube length for other values of these parameters.

CHARGE AND CURRENT DENSITIES

The purpose of maintaining the outer cylinder at a high potential is %o
provide a sufficiently strong decelerating force on the charged colloids to keep
them confined within the tube. In order to accomplish this, the potential must
be at least as high as the potential on the emitting wire.

The charged particles are formed in the high-potential region around the
wire. From figure 2, it is evident that, for practical emitter radii and oper-
ating potentials, each colloid would have an energy of the order of 10° electron
volts if singly charged particles are assumed. The maximum density of neutral

particles entering the tube is estimated to be of the order of 1015 per cubic
centimeter. The interaction energy of two charged colloids at this density
would then be of the order of 0.01 electron volt. The description of the motions

10



of the charged colloids within the tube then coincides with that of an ideal gas
in which the particles move independently of each other but achieve thermodynamic
equilibrium by virtue of the randomizing effect of the weak interactions be-
tween particles.

With the Boltzmann factor, the relative density of particles within the
tube can be found. The potentials in the intercylindrical space, for the case
where the outer cylinder is at the same potential as the wire, are given as

v, r
& 1n_° rg €1 <1y
r T
in 2
s (28)
V(r) =
Va T
1in = r. <r <r
Ty T, o="="b
In —
T, )

In its most general form, the density can be written as

o =c /‘"'/eXP<_%>dpl"'dp3N (29)

where H(pl . ) is the Hamiltonian function of the conjug-

Payp 943 -+ - - dzy
ate momentums and coordinates p and g, and ¢ can be considered to be a
normalizing constant. Since the potentials depend only on the coordinates, the
integrations over the momentums contribute a constant factor and the density is
a function of the coordinates. In particular, because of equation (28), the
density is a function of the radial coordinate alone:

o(r) = p(r,) exp [ %ﬂ} (30)

where p(ro) is a constant equal to the maximum density that occurs at V = O,
that is, at r = ro. In terms of the potentials of the two regions, as given in
equation (28), the normalized density is then

— ]
L=.~Va 1
kT r
r 1n —9-
eV 1n -2 Tg
olro)exp |- e —= )= olr )= r.<r<r
o kT To o\r a—-"—-"0
In = o,
Ty
p = o (31)
a 1
kT T
b
in X In =
eV, Tg T °
2 _ 9% )
p(eglems |- @ e |- ote,) ) rg <x <y
1in =
| kK
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The quantity eVa/kT needed in equations (31) rejuires a knowledge of the
ion gas temperature. Since the initial conditions are approximately known, the
effective temperature can be calculated. The average energy per emitted particle
is approximately eVg, while from the ideal gas equation, the average energy is

% k¥T. Equating these terms gives the desired relation

(32)

A fileld~emission ionizer, such as the one described, can never operate under
space-charge-limited conditions, for this implies that the field at the emitter
vanishes. It is not clear what the exact ssturation level is, but it is obvious
that the field does not have to be suppressed very greatly to cause a notable
increase in the charging lifetime and thus end field emission. If it is assumed
that an anode field~strength suppression of 10-2 Fgq 1s the allowable maximum,

an estimated upper limit to p(r,) (appendix B) is

2
___é__~ + 2
r

2 1ln 2
T

o(r,) - N\ o [ (53)

s
er
o

-2
10 Vaeo

The average flux density, EN out of the tube end, with an assumed mean
drift velocity 5;, is then equal to

po(r)r dr (34)

g = v,e(r,) —23— 12 (35)

The mean velocity of a molecular beam in the mass range being considered
(Mm* ~ 10722 kg), at a temperature of the order of 1000° K, is approximately
7 meters per second, as computed from

v =3 <§ﬂ_k?>l/2 (36)

The value of Sﬁ calculated at a likely design point, for instance,

v = 10° volts, r, = 1075 meter, and rg = 1073 meter is therefore of the order



of 1018 per square meter per second. This figure, if multiplied by the elec-
tronic chsrge e gives a maximum current density of O.1l44 ampere per sjuare
meter from this device in thermal equilibrium; that is, if no field is used to
drew the charged colloids out of the tube. This figure also represents the
necessary input of neutral colloids from the particle generator, in order to
achieve maximum charging efficiency More than this would cause saturation and
a resulting loss in ionization efficiency. The use of even a moderate electric
field applied axially along the cylinder, however, can greatly increase the cur-
rent density.

CONCLUDING REMARKS

The field emission method of producing positively charged colloids is, on
the basis of net power per charge, one of the most efflcient ways of charging.

The propellant-utilization efficiency, as pointed out in the text, could be
made to approach unity in a cylinder of reasonable length. This, of course, is
contingent on how well the colloid generator can form aggregates from the mona-
tomic propellant.

At present, the necessary relation between the applied potentials and the
emitter radil required for this charging method is somewhat difficult to
achieve, but it is likely that in the future monocrystalline filaments and/or
high-voltage sources will be available. With the advent of such thin filaments,
it is possible that the required emitter potential will be reduced enough so
that a magnetic field can be used to turn the charged colloids, and thus the
intermediate grid could be eliminated. This is desirable since the grid is
located in the region of greatest charge density and is subjected to severe im-
pingement.

Lewis Research Center
National Aeronautics and Space Administration
Cleveland, Ohio, August 13, 1963
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APPENDIX A

SYMBOLS
potential barrier end point
constant
transmission probability
energy level or state
vacuum potential

Ferml energy level

translational energy in x~, y-, and z-directions, respectively

electronic charge

electric field strength

electric field strength at anode

electric field strength at ry

Fermi distribution function; wvelocity distribution function

fraction of particles having velocities up to v,

Hamiltonian function
Planck's constant
average flux density
Boltzmann's constant
cylinder length

specific eylinder length, and table following it defined by
eq. (28)

electronic mass

atomic mass

total number of constituent atoms in colloid

Avogadro's number



Xy ¥,2

r,8,z

number of electrons passing through potential barrier per sec

differential number of electrons passing through potential barrier
per sec

ionization probability

momentum

momentum components in x-, y-, and z-directions, respectively
coordinate

effective colloid radius

radius

anode radius

outer cylinder radius

initial radial distance from anode

grid radius

effective surface area presented to tunneling electrons
temperature

residence time

potential energy

potential functilion

voltage at anode

voltage at outer cylinder

veloclity components In x~-, y-, and z-directilons, respectively
average velocity in z-direction

dummy variable in eq. (20)
defined by eg. (19) at r = ryg
Carteslan coordinates

cylindrical coordinates

15
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P

Subscripts:

i

1. .. 3N

16

polarizability

vacuun dielectric constant

dummy variable

nondimensional beam radius
variable defined by eq. (27)
density function

number density of atoms in colloid
density of water at 4° C

surface variable

charging time

work function

initial

degrees of freedom
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APPENDIX B

SUPPRESSION OF ANODE FIELD STRENGTH

The field strength at a distance r due to a cylindrically symmetric cloud
charge of density ep(r) and a central wire conductor having & surface charge
density of eOF(ra) is

T
F(r) = 2 2ne rgF(ry) + e / p(r)2mr dr (B1
Zneor .

The wire is held at a constant potential Vg with respect to the grounded
grid at r,. Hence, this voltage is glven alternately by equations (22) and

(B2):
ra
V, = - / F(r)dr (B2)

To

If the appropriate expression for p(r) from equation (31) is used and the
indicated integrations are carried out, the effect of the space charge on the
wire field strength is found to be

2
ep(r )r
= o’ o
Fy - Flry) = — — (B3)
r
€ Ty 1n o & + 2
Ty 2 lnfro7ra5
Terms involving powers of r, are ignored since rgy >> rg.
If a field-strength suppression factor of
-2
Fg - F(rg) = 107% F, (B4)
is assumed, the maximum density becomes
2
1072 Ve, 3 + 2
2 lniro7ra5
olry) = ——— L= (85)

2
ery

in which equation (22) was again used.
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TABLE IT.

- CYLINDER LENGTH AT

MELTING POINT

Element Melting point

at 760 mm Hg,

ok

Lithium

Sodium

Potassium

Cesium

Rubidium

459. 2

370.7

335.5

301.7

311.7

Specific
cylinder
length,
L*,

m

5, 25%10"1

2.19x10" %
1.48%10~%
3.54X10™2

4.10%X10-2




10-6
— !
N \
\ \
5 — - Lithium ———
v\ —— ——  Sodtum
\ \ —— ——— Potassium
\ ——=——— Rubidium __
\ \ ——=—-—— (Cesium
SRR |
1077 ! \ Y \ \
‘A \\ \ N\ \ \\
\ \ \ A\ \ \
\ \ 3 A\ \ \
X R W W Y\
X \ \ \ \ \ !
\ \\ \\ A\ \
\\, \ \ \\\\ \\ \ .\\
\‘ \ \\ \ \ \ \ \ \\
\
o 10-8 A A} A w Y \\\ \\\ \
o - TN X \ \ X
\ J \NEELEA X i\ N—
o \ \ NN , b AAANAN
X \ \ v\ \ \ A\
g \ NEANN \ \ W\
£ \ NEANERN NN
¥ \ \ k \ )
5 \ ‘ \\ \ \ \
: ‘ \ 0
g 1079 A A} \ N AY \\ ¥ \\ AN
O AY AN \ AN 3\ N
T X AY N~ %
\ N\ - \ KNEAN
\ NN\ v \ N\
\ N, \\ A\ NN
\\%if \ ) \\ \‘\\
\\ \ N \\\
NN \\
10710: \\ X I —
A AY AN
N N
} \“ \\
i \‘\ \\ \\
‘ \ N
' \ N N
: ! : 3 \
] 9 9
.8 1.0 1.2 1.4 1.6 1.8 2.0x109 1.0 1.2 1.4 1.6 1.8 2.0 2.2x10

Ta

Fleld strength, F, v/m

(a) Atom density, 10% atoms per colloid.

Pigure 1. - Charging time as function of field strength.

(b) Atom density, 10% atoms per colloid.



_—r

/e

Y -

|
L T

10-3

-

1074

1075

Anode radius, rg, m

e

- Anode voltage as function of anode radius.

10-6

(a) Atom density, 104 atoms per colloid; grid radius, 10~3 meter.
Figure 2.

106

- ”/"l’ —
- NN j
N -
: - /,/ N
g g LD NN
fgias AN\
[ R s B 4//
8839 N\
ILSPRC ////
| N
W _ ‘‘‘‘‘ 1] - frn.ﬁ\l.ltsf\\ﬁ‘ -
B _ L 1T T . NeRF T+
- _ - 1 N
i T A
- N\
l | L)
: AN IR
=] 3

A “Bp ‘o8eyTon opouy




5

Anode voltage, V,, v

& — FO——

106 i T rrvrt T T LERLES 1

I . . ,/ [N

— thk.llum // —

T — — — Sodium 7 7

. —— — ——  Potassium '41/://

__ T —--——— Rubidium Yl .

— === —— (esium 44?3 o E
e
S
G
10° %/
57T~
/'/4"/‘/'/
7
1{///‘ z '//
/,///, ’
/ ;/7 ‘
/
WA
10% v
//7/‘;/;1/
/
4%
/}',7
//
10°
10-7 10-6 10-° 10~% 10-3

Anode radius, rgy, m
(b) Atom density, 10% atoms per colloid; grid radius, 10~2 meter.

Figure 2. - Continued. Anode voltage as function of anode radius.
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Anode radius, rg, m
(c) Atom density, 103 atoms per colloid; grid radius, 1073 meter.

Figure 2. - Continued. Anode voltage as function of anode radius.
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Anode radius, rg, m
(d) Atom density, 10° atoms per colloid; grid radius, 10°2 meter.

Figure 2. - Concluded. Anode voltage as function of anode radius.



